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Abstract

Rubbers are commonly used in industry to reduce vibration trans-
fer and, consequently, reduce structural noise. The vibration transfer
through rubber can be modelled with finite elements; however to achieve
satisfactory results it is necessary to know the viscoelastic properties of
the rubber. This paper describes the commonly used theory of vibra-
tion transmission through rubber modelled as a single-degree-of-freedom
(SDOF) system. Three simplified rubber models are used to identify the
constant Young’s modulus and damping factor from the measurements of
two different rubber specimens, and with the obtained results the theo-
retical transmissibilities are calculated. The frequency-dependent Young’s
modulus and damping factor are also calculated from measurements. The
practical use of previous measurements of dynamic material properties is
presented in a finite-element analysis, where three different definitions of
the dynamic material properties are carried out for four different rubber
specimens, which corresponds to twelve analyses. The finite-element anal-
yses are then compared with the measurements, and general guidelines for
using dynamic material properties in ANSYS Workbench v.14 are given.

1



Keywords: Dynamic Material Properties of Rubber , Young’s Modulus, Damp-
ing Factor

1 Introduction

Rubber materials are commonly used to control structural vibrations and sound
radiation. However, to predict the vibration response of a system the dynamic
characteristics of rubber, such as the Young’s modulus and the damping factor,
must be accurately identified.

Because of the viscoelastic behaviour of the rubber material, its dynamic
material properties, which depend on many environmental and operating con-
ditions, but mainly on the static pre-load, vibration amplitude, temperature
and frequency Nashif et al. (1985), are difficult to define. From the theory of
viscoelasticity Ferry (1970) it is known that at least two parameters are needed
to completely define the mechanical behaviour of an isotropic viscoelastic ma-
terial. Usually these two parameters are the Young’s and bulk moduli or one
modulus and the Poisson’s ratio of the viscoelastic material.

In the literature, many authors have conducted experimental research by
directly measuring the Young’s modulus and the damping factor. Sim and
Kim Sim and Kim (1990), for example, developed a technique to estimate the
material properties of viscoelastic materials for use with finite-element-method
(FEM) applications. They derived the Young’s modulus, the damping factor
and the Poisson’s ratio from two different rubbers with various shape factors
(one with a small factor and one with a large). A similar test method for
characterizing the dynamic behaviour of rubber compounds was presented by
Ramorino et al. Ramorino et al. (2003), and their results were also compared
using the Dynamic Mechanical Thermal Analyzer (DMTA), which showed good
agreement. Additionally, Caraciolo et al. Caracciolo and Giovagnoni (1996);
Caracciolo et al. (2001) presented measurements of the complex Poisson’s ratio
and Young’s modulus versus frequency, which were performed on simple, beam-
like specimens. One of the drawbacks of the mentioned test methods is the
inability to statically preload the test specimen to whatever preload may be
desired, because the only way to preload the test specimen is to add mass,
which results in large loads on the shaker.

The dynamic stiffness was also studied instead of the dynamic modulus
through the receptance of the specimen, where the impact hammer replaced
the shaker as the source of the vibration. Lin et al. Lin et al. (2005) devel-
oped a method to evaluate the frequency-dependent rubber mount’s stiffness
and damping characteristics by utilizing the measured complex frequency re-
sponse function from the impact test. Ooi and Ripin Ooi and Ripin (2011)
simultaneously measured the dynamic driving-point stiffness and the dynamic
transfer stiffness and made a comparison with the previously mentioned method
developed by Lin et al. Lin et al. (2005). The authors showed that in the low-
frequency range the dynamic driving-point stiffness can be used to represent
the dynamic transfer stiffness, but with an increase of the frequency the inertial
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force gets bigger compared to the elastic force in the system; therefore, the dy-
namic stiffness starts do deviate significantly. Nadeau and Champoux Nadeau
and Champoux (2000) made a comparison of engine mount complex stiffness in
axial and lateral direction using blocked transfer stiffness and Hao et al. Hao
et al. (2011) used dynamic stiffnes measurement for design of suspended handles
for reducing hand-arm vibration. Basdogan and Dikmen Basdogan and Dikmen
(2011) measured dynamic driving point stiffness of vehicle door seal and modeled
viscoelastic response with generalized Maxwell solid. A disadvantage of these
methods is that a big, bulky mass is necessary for a measurement of the recep-
tance functions. Vandahi and Saunders Vahdati and Saunders (2002) described
a high-frequency test machine and measured the dynamic rubber stiffness of an
aircraft-engine mount up to 2000 Hz. The authors indicated that with a proper
design of the test fixture and the appropriate mass selection a dynamic stiffness
test on the rubber mounts at frequencies as high as 5000 Hz can be performed.
The downside of this method is that a conventional test machine is still needed
to obtain the dynamic stiffness up to 250 Hz, and like with previous methods a
big, bulky mass is needed.

The present work reviews three theoretical models with a single-degree-of-
freedom (SDOF) system with a ground excitation to describe the dynamic re-
sponse of the rubber. Equations for an estimation of a constant Young’s modulus
and a constant damping factor from the transmissibility were developed. The
response of the SDOF system was then measured experimentally and from it,
with the developed equations, a constant damping factor and Young’s modulus
at the resonance frequency were evaluated for all three theoretical models. Ad-
ditionally, estimated values were used to calculate the response of theoretical
SDOF systems and compared with the measurements.

Furthermore, the experimentally measured response of the SDOF system
was used to identify the dynamic material properties of the rubber; the Young’s
modulus and the damping factor were, in this case, derived as a function of the
frequency. These frequency-dependent results were then used in a finite-element
analysis to predict the dynamic response of the measured system.

2 Theoretical background

A single-degree-of-freedom (SDOF) system with ground excitation that consists
of an element of mass M and a linear rubber-like material, which separates the
mass from a foundation that vibrates sinusoidally with an angular frequency ω,
is shown in Figure 1. The rubber is utilized so that its behaviour is governed by
the complex shear modulusG∗

ω. Here it is assumed that the temperature remains
constant with time, so that the shear modulus may be written as Snowdon (1968
1979)

G∗
ω = Gω(1 + iδGω

), (1)

where Gω is the real part and δGω is the ratio of the imaginary to the real part
of the complex shear modulus G∗

ω, and is known as the damping factor and i
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Figure 1: Single-degree-of-freedom (SDOF) system with ground excitation.

is equal to
√
−1. Snowdon Snowdon (1968) also reported that for rubber-like

materials we can write, with a negligible error, that

Eω = 3Gω (2)

and
δEω

= δGω
. (3)

Similar to equation 1, with equations 2 and 3 in mind, expression for the complex
Young’s modulus E∗

ω can be written in form

E∗
ω = Eω(1 + iδEω

), (4)

where Eω is the real part and δEω is the ratio of the imaginary to the real part
of the complex Young’s modulus E∗

ω, and is known as the damping factor.
Gent and Lindley Gent and Lindley (1959) proposed a relationship between

the apparent Young’s modulus Ea and the Young’s modulus E for bonded rub-
ber blocks, except for those with large lateral dimensions (a large shape factor),
with the expression

Ea = E(1 + βS2), (5)

where β is a numerical constant and S is a dimensionless shape factor. For
samples of rubbers that are circular, square or moderately rectangular in cross-
section, β=2 Snowdon (1968); Gent and Lindley (1959) and smaller values of
β are used for carbon-black-filled vulcanizates Gent and Lindley (1959). The
shape factor is the ratio of the area of one loaded surface to the other force-free
area. The shape factor for a rubber cylinder is D/4h, where D is the diameter
and h is the height of the cylinder Snowdon (1968), and the shape factor for
a cuboid is (d1d2)/(2h(d1 + d2)), where d1 and d2 are the dimensions of the
rectangular cross-section and h is the height of the cuboid.

The equation of motion for a system with a frequency-dependent Young’s
modulus can be written in the frequency domain as

−ω2Mx∗2e−iωt = (A/h)E∗
aω(x1 − x∗2)e−iωt, (6)

where x1 is the displacement of the foundation, x2 is the displacement of the
mass M , A is cross-sectional area and h height of rubber-like material and the
asterisk superscript denotes complex quantities.
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From equations 4 and 6 it is possible to derive the transmissibility of the
system, which is defined as the magnitude of the displacement ratio

T =

∣∣∣∣x∗2x1
∣∣∣∣ =

√
(1 + δ2Eω

)√
(1− ω2 hM

AEaω
)2 + δ2Eω

. (7)

This is a general transmissibility equation from which the transmissibility of
any linear, rubber-like material may be obtained, if the dependence of Eaω and
δEω

on the frequency is known.
In Ref., Snowdon (1968) certain assumptions were made about the properties

of rubber-like materials that simplify the general transmissibility equation. For
better referencing of the general transmissibility, equation 7 is written in the
form

T =

√
1 + δ2Eω√

(1− Ω2 Ea0

Eaω
)2 + δ2Eω

. (8)

Here, Ω = ω/ω0 is the frequency ratio, ω2
0 = (AEa0)/(hM) is the natural

frequency of the SDOF system and Ea0 is the value of Eaω at the natural
frequency.

The first simplification of equation 8 is called damping of the Solid Type I
(sometimes referred to as hysteretic damping). This simplification is used for
low-damping materials where the shear or Young’s modulus and the damping
vary only slowly with frequency and may be considered as constants in the
frequency range of interest in vibration problems. Thus, Ea0/Eaω = 1 and
δEω

= δE . With the use of this simplification the transmissibility becomes

Tsolid I =

√
1 + δ2E√

(1− Ω2)2 + δ2E
. (9)

The the second simplification is called damping of the Solid Type II and is
used for high-damping materials, where the shear or Young’s modulus increases
very rapidly with frequency, and for rubbers having transition frequencies in the
frequency range of interest in vibration problems. Thus the Young’s modulus is
assumed to be directly proportional to the frequency and the damping factor is
considered to be independent of the frequency, as in the case of damping of the
Solid Type I. This can be written as Ea0/Eaω = ω0/ω = 1/Ω and δEω

= δE .
The expression of transmissibility, equation 8, becomes

Tsolid II =

√
1 + δ2E√

(1− Ω)2 + δ2E
. (10)

Third simplification is called damping of the Parallel Spring and Dashpot,
also known as damping of the viscous type. In this case the rubber-like material
is replaced by a spring of stiffness K and a parallel dashpot with the coefficient
of viscosity η, as shown in Figure 2. The transmissibility for this system is
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Figure 2: SDOF system mass-spring-dashpot with ground excitation.

Tviscous =

√
1 + (2ΩδR)2√

(1− Ω2)2 + (2ΩδR)2
, (11)

where Ω is now defined as the frequency ratio with the natural frequency, defined
as

w2
0 =

K

M
(12)

and δR is the damping ratio, defined as

δR =
ηω0

2K
. (13)

Expressions above were derived assuming that isolator does not have any
mass, but real-life isolators have some mass and as a result, wave effects may
develop at high frequencies of transmitted vibrations whereas the dimensions of
the isolators become commensurate with multiples of the half wavelengths of the
elastic waves passing through the flexible elements of the isolators as reported by
Rivin Rivin (2002) and Snowdon Snowdon (1968 1979 1958). Wave frequencies
are intense high frequency peaks resulting in deterioration of transmissibility
in the high frequency range and can be seen in Figure 6 High-frequency wave
resonances in vibration isolators develop at frequencies Rivin (2002)

ωi = iπω0

√
M

%Ah
(14)

where ω0 is the fundamental natural frequency, i = 1, 2, 3 is the sequential
number of the resonance, and the expression under the square root is the mass
ratio between the mass M of the supported object associated with the flexible
element, where the total mass of the flexible element is calculated from the
density %, the cross-sectional area A and the height h.

3 Experimental set-up

In the experimental set-up a typical industrial rubber with a cross-section of
20 x 30 mm and height of 20 mm was used. The rubber was tightly glued to

6



a cylindrical aluminum mass (83.9 g) on one end and to the specially designed
head expander of a shaker on the other end, as shown in Figure 3. In this
set-up, the aluminum mass represents the rigid mass of the SDOF system in
Figure 1 and the rubber specimen provides the complex Young’s modulus, which
includes the damping as shown in equation 4. The head expander was fixed to

M
2

1

E
!

¤

accelerometer 2   

accelerometer 1  

shaker

Figure 3: Experimental set-up.

an electromagnetic shaker (B&K type 4809) that was driven by B&K software
PULSE v.13. Broadband white noise was used for the excitation signal. The
transmissibility was measured with two accelerometers(B&K type 4507 B004):
one was used for acquiring the input signal and the other for acquiring the
output signal, x1 and x2, respectively. The measured transmissibility function
for two different rubber specimens is shown in Figure 6.

4 Estimation of the Young’s modulus and the
damping of the rubber from the measurement

4.1 Constant Young’s modulus and damping

Damping governs the magnitude of the transmissibility at resonance. So by
using the derivative of transmissibility, equation 7, it is possible to determine at
which frequency the maximum occurs, and with a knowledge of the maximum
magnitude of the transmissibility from the measurement, the damping factor
can be calculated.

From the derivative of the equation for the damping of the Solid Type I,
equation 9, we can determine, that the maximum of the transmissibility occurs
at a frequency ratio Ω = 1, which is at the natural frequency of the SDOF
system. The magnitude of transmissibility at the natural frequency is

Tmax =

√
1 +

1

δE
. (15)
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Thus by knowing the maximum of the transmissibility from the measurement,
the damping factor of the Solid Type I can be calculated from equation 15,

δE =
1√

T 2
max − 1

. (16)

The same procedure can be repeated with equation 10 for the damping of the
Solid Type II. In this case the maximum of the transmissibility also occurs at
the resonance frequency, Ω = 1. The magnitude of the transmissibility and the
damping factor at the natural frequency can be calculated from equations 15
and 16. For both cases the apparent Young’s modulus at the natural frequency
Ea0 is calculated from ω2

0 = (AEa0)/(hM) and is

Ea0 =
ω2
0hM

A
, (17)

where M is the total mass of the aluminium cylinder and the accelerometer 2.
With respect to equations 5 and 17, a constant Young’s modulus is derived

E0 = Ea0/(1 + βS2). (18)

For the damping of the Parallel Spring and Dashpot, equation 11, the max-
imum of the transmissibility occurs at the frequency ratio

Ω =

√√
8δ2R + 1− 1

4δ2R
. (19)

Referring to equations 11 and 19 the maximum of the transmissibility can be
calculated and then the damping ratio of the Parallel Spring and Dashpot system
is given with the equation

δR =

√
2

2

√√√√ T

T 3 − T +
√

1
T 2−1 − 2T 2

√
1

T 2−1 + T 4
√

1
T 2−1

. (20)

The natural frequency of the Parallel Spring and Dashpot system ω0 is calcu-
lated from equation 19, and the spring stiffness K can be derived from equa-
tion 12. From the spring stiffness K with respect to the definition of the Young’s
modulus and the equation of Hook’s law, it is possible to deduce apparent
Young’s modulus of rubber at the natural frequency

Ea0 =
KL0

A0
, (21)

where A0 is the original cross-sectional area through which the force is applied
and L0 is the original length of the object. With equation 18 a constant Young’s
modulus is calculated from apparent Young’s modulus.

The estimated values of the constant Young’s modulus and the damping
factor, from all three theoretical SDOF systems, equations 15 to 21, for two
different rubber specimens are presented in Table 1 and Table 2 .
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Table 1: Young’s modulus and damping for rubber specimen 1 - rubber of
hardness 40 ShA

Solid Type I Solid Type II Parallel Spring and Dashpot
E0 [MPa] 4.297 4.297 4.315
δE [-] 0.0909 0.0909 −
δR [-] − − 0.0455

Table 2: Young’s modulus and damping for rubber specimen 2 - rubber of
hardness 63 ShA

Solid Type I Solid Type II Parallel Spring and Dashpot
E0 [MPa] 20.785 20.785 22.021
δE [-] 0.355 0.355 −
δR [-] − − 0.1775

4.2 Frequency-dependent Young’s modulus and damping

Like in Sim and Kim (1990); Ramorino et al. (2003), where the complex be-
haviour of the rubber was written in a different form, the frequency-dependent
Young’s modulus and damping factor of the rubber-like material can be cal-
culated from the real and imaginary parts of the complex transmissibility. By
writing the real part Re(T ) = Re(x2/x1) and the imaginary part Im(T ) =
Im(x2/x1), the following relations for the frequency-dependent apparent Young’s
modulus and damping factor of the rubber-like material can be obtained

Eaω =
hMω2

A

Im(T )2 + (Re(T )− 1)Re(T )

Im(T )2 + (Re(T )− 1)2
(22)

and

δEω
=

Im(T )

Im(T )2 + (Re(T )− 1)Re(T )
. (23)

Re(T ) and Im(T ) can be obtained directly from the measured transmissibility,
while the mass M has to be measured..

With the use of the real and imaginary parts of the measured transmissibility
(Re(T ) and Im(T )), as well as equations 5 and 22, it is possible to calculate the
Young’s modulus as a function of the frequency, as shown in Figure 4. To
estimate the frequency dependent damping factor as a function of frequency,
shown in Figure 5, in addition to the real and imaginary parts of the measured
transmissibility, equation 23 was also used.

5 Dynamic response calculation

5.1 Calculation with theoretical SDOF systems

Estimated constant values of the Young’s modulus and the damping factors
from theoretical SDOF systems, presented in Table 1 and Table 2, were used to
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Figure 4: Young’s modulus as a function of frequency for specimen 1 (rubber
of hardness 40 ShA) and specimen 2 (rubber of hardness 63 ShA).
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Figure 5: Damping factor as a function of frequency for specimen 1 (rubber of
hardness 40 ShA) and specimen 2 (rubber of hardness 63 ShA).

calculate the transmissibility for the damping of the Solid Type I, equation 9,
the damping of the Solid Type II, equation 10, and the damping of the Parallel
Spring and Dashpot, equation 11. Figure 6 shows measured and calculated
transmissibilities for two different rubber specimens (one softer 40 ShA and one
harder 63 ShA).

5.2 Finite-element analyses

Finite-element analyses were also made with ANSYS Workbench v.14 to com-
pare the numerically calculated transmissibilities with the measured ones. The
finite-element model represents a cylindrical aluminium mass with a diameter
of 50 mm and a height of 15 mm, and a cuboid rubber with a cross-section of
20 x 30 mm and a height of 20 mm, and a accelerometer on the top surface of
the aluminium mass, which was modelled as a mass point of 4.6 g, shown in
Figure 7 (left). The mesh was generated with higher order 3-D 20-node solid el-
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Figure 6: Comparison of different theoretical SDOF systems with measurement
for specimen 1 (rubber of hardness 40 ShA) and specimen 2 (rubber of hardness
63 ShA).

ement that exhibits quadratic displacement behaviour, SOLID186 and element
MASS21 for mass point. Mesh contains 5014 elements and 22981 nodes, shown
in Figure 7 (right).

Figure 7: Finite element model in ANSYS Workbench v.14, model (left) and
mesh (right).

The Young’s modulus of the aluminium mass was 7.1 · 1010 N/m2 and the
Poisson’s ratio was 0.33. The density was calculated from the measured weight
of the aluminium mass (83.9 g) and was 2848.7 kg/m3. The densities of the
rubber specimens were also calculated from the masses of 14.4 g for specimen 1
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and 15.1 g for specimen 2, which corresponds to densities of 1200.0 kg/m3 and
1258.3 kg/m3 respectively. The Poisson’s ratio for both rubbers was chosen
near the theoretical value of 0.5 and was 0.4999. The Young’s modulus and
the damping factors were defined in three different ways regarding the type of
analysis.

In the analysis of the transmissibility for the frequency-dependent Young’s
modulus and damping factor, the estimated frequency-dependent values, shown
in Figures 4 and 5 , were imported into finite-element model and defined as
TB,ELASTIC for the Young’s modulus and TB,SDAMP for the material struc-
tural damping coefficient as frequency-dependent in commands under definition
of a harmonic analysis.

In the analysis of the constant values of the Young’s modulus and damping
factor the values were defined in software’s Engineering Data. Special attention
when defining the damping was needed for both cases. A consideration of dif-
ferent vibration damping using the software ANSYS is addressed in Cai et al.
(2011).

In the first case with the values estimated from the theory of damping of the
Solid Type I or the Solid Type II, table 1, the damping was input as the constant
damping coefficient ζ where the value of damping was half of the estimated
damping factor and was calculated with equation ANS (2012a 2011)

ζ = δ/2 = 0.0909/2 = 0.0455. (24)

In the second case with the constant values from the theoretical SDOF system
damping of the Parallel Spring and Dashpot, table 1, the damping was input
as the damping factor β of the Rayleigh damping, where β was given by ANS
(2012b)

β =
2δi
ωi
, (25)

where ωi is the i-th natural angular frequency and δi is the damping ratio
at the i-th natural circular frequency. In our case δi = δR = 0.0455 and
ωi =1311.30 rad/s, (208.7 Hz), which from equation 25 gives the stiffness matrix
multiplier β = 6.9397 · 10−5.

The harmonic analysis for the three cases was analysed in the frequency band
from 20 Hz to 3000 Hz, with a frequency resolution of 1 Hz. The measured and
calculated transmissibilities are shown in Figure 8.

Furthermore, the numerical calculations for two different shape factors for
each specimen were made, which were obtained by varying the orientation of
the rubber specimen.When the rubber specimen was oriented horizontally (20 x
30 x 20 mm3) and vertically (20 x 20 x 30 mm3) the shape factors were 0.1667
and 0.3, respectively. The numerically calculated transmissibilities are shown
in Figure 9 for specimen 1 and in Figure 10 for specimen 2.
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Figure 8: Comparison of transmissibilities calculated with frequency-dependent
Young’s modulus and damping, constant Young’s modulus and damping ob-
tained from Solid Type I and II model and from Parallel Spring and Dashpot
model with measurement for specimen 1 with a horizontal orientation (cross-
section 20 mm x 30 mm).

6 Discussion

Four rubber specimens were used in our experiments. To determine the Young’s
modulus and the damping two rubber specimens with a cross-section 20 mm x
30 mm and a height of 20 mm were prepared and in the experiments the orien-
tation of the specimens was changed to obtain four different transmissibilities.

First, the Young’s modulus and the damping factor were calculated from
equations 15 to 21 and were presented in Table 1 for specimen 1 and in Table 2
for specimen 2. These values were then used to calculate the transmissibilities
of three simplified theoretical models named the damping of the Solid Type I,
equation 9, the damping of the Solid Type II, equation 10 and the damping
of the Parallel Spring and Dashpot, equation 11. The results can be seen in
Figure 6. We can conclude, that in our case the damping of the Solid Type II was
completely inappropriate for modelling the theoretical response of the rubber
for both specimens. From a comparison of the results for specimen 1 it is
clear that the correlation between the damping of the Solid Type I and the
damping of the Parallel Spring and Dashpot with the measurement was good up
to about 800 Hz, i.e., approximately four times the natural frequency, and from
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Young’s modulus and damping and constant Young’s modulus and damping
obtained from Solid Type I and II model with measurement for specimen 1
with a horizontal (cross-section 20 mm x 30 mm) and vertical orientations (cross-
section 20 mm x 20 mm).

here on both of the theoretically calculated transmissibilities start to deviate
significantly from the measurement. Also, from a comparison of the results of
specimen 2 it is clear that the damping of the Solid Type I does not agree well
with the measurement in the higher frequency range, since the damping value
was higher, but not high enough to obtain good approximation of the response
with the damping of the Solid Type II; however the Parallel Spring and Dashpot
model shows better agreement in the considered frequency range.

At higher frequencies the deterioration of the measured transmissibility can
be seen and is a consequence of wave effects. While the natural frequency
of specimen 1 is 208.7 Hz, the first theoretical wave frequency, equation 14, is
1626.77 Hz, which is in good agreement with the measurement, where an intense
peak resulting in a deterioration of the transmissibility can be seen at 1644 Hz.

Second, the frequency-dependent Young’s modulus and damping factor were
calculated where the real and imaginary parts of the measured transmissibility
and equations 5, 22 and 23 were used. The frequency-dependent values are
presented in Figures 4 and 5. The conclusion can be drawn, that the Young’s
modulus and the damping factor of specimen 1 may be used only in the frequency
range up to 1200 Hz, while in the higher frequency range the calculations were
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Figure 10: Comparison of transmissibilities calculated with frequency-
dependent Young’s modulus and damping and constant Young’s modulus and
damping obtained from Solid Type I and II model with measurement for speci-
men 2 with a horizontal (cross-section 20 mm x 30 mm) and vertical orientations
(cross-section 20 mm x 20 mm).

not correct due to the wave effects, which the SDOF system does not take into
account, as well as the measurement noise. The estimated values of the Young’s
modulus and the damping factor in the case of specimen 2 seem to be in good
agreement with our expectations for the considered frequency range.

From this the general conclusion can be made that the frequency range
for which the frequency-dependent values can be calculated mostly depends on
the Young’s modulus and the dimensions of the rubber. The dimensions and
the Young’s modulus govern the natural frequency of the SDOF system with
the integrated rubber, and the higher the natural frequency is, the higher in the
frequency range the values of the dynamic material properties can be calculated.

Several finite-element analyses were carried out to verify the use of the es-
timated values of the Young’s modulus and the damping factor in the finite-
element model.

Three types of modelling with respect to damping in ANSYS Workbench v.14
were presented in Figure 8, where good agreement of the finite-element analysis
with the frequency-dependent values and the constant values obtained from the
SDOF system with damping of the Solid Type are shown, but the numerically
calculated transmissibility where the damping was input as the damping factor
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β starts to deviate significantly from the measurements at higher frequencies.
the calculated values of the damping factor for specimen 1, Figure 5, were useful
only up to 1200 Hz; therefore, the transmissibility was only calculated up to this
frequency. Consequently, it was not possible to make any conclusions about the
transmissibility in the frequency range above 1200 Hz. It should also be noted
that the numerically calculated transmissibility, where the damping was defined
as a constant damping coefficient, shows good agreement with the measurement
also in the high-frequency range where the internal natural frequencies of the
rubber occur.

A further four types of finite-element analyses were made (two on each spec-
imen), where two different orientations of rubber were analysed (horizontal and
vertical). All the values were estimated for a horizontal orientation of the rub-
ber specimens and applied to a finite-element analysis of the rubber specimen
in a horizontal and vertical orientations and compared with the measurements.
For the analyses with specimen 1, Figure 9, similar conclusions could be made
as for the previous analysis in Figure 8. Finite-element analyses with the rub-
ber specimen 2, Figure 10, showed that the transmissibilities calculated with
frequency-dependent values showed better agreement with the measurements
than the transmissibilities calculated with constant values, but the transmisi-
bilities for all cases were in good agreement with the measurements.

Based on the presented finite-element analyses it can be concluded that the
Young’s modulus and the damping factor of rubbers with a small variation of the
dynamic material properties, like specimen 1 in our case, could be modelled as
constants, where the damping has to be input as a constant damping coefficient
not as β in the Rayleigh damping.

To obtain the Young’s modulus and the damping factor for the considered
rubber up to the higher frequency range, the natural frequency of the SDOF
system has to be high, meaning the dimensions of the rubber have to be chosen
accordingly. The use of reduced-variables method Ferry (1970), where experi-
mental curves gained at different temperatures are gathered into a unique curve
called the master curve for the Young’s modulus is also an option.

A potential source of error is the 0.1 mm variation in the dimensions of
the rubber, which is a result of cutting the rubber to the desired dimensions.
This effect introduces some uncertainty in calculating the shape factor S, on
which the Young modulus depends a great deal. A second potential source
of error is the lack of knowledge about the exact value of the Poisson’s ratio
of the rubber for the input parameter in ANSYS. Theoretically, the Poisson’s
ratio of the rubber is 0.5, but since rubbers may contain other additives the
Poisson’s ratio is rarely equal to 0.5, but is usually somewhat smaller. Sim and
Kim Sim and Kim (1990) reported that for rubbers with large shape factors the
Poisson’s ratio has a great influence on the Young’s modulus. In the literature
the effective compression modulus was derived Tsai and Lee (1998); Koh and
Lim (2001); Tsai (2005); Pinarbasi et al. (2006) instead of the apparent Young’s
modulus and its dependence on the Poisson’s ratio and the shape factor was
shown. Optimization process calculating natural frequencies of plates in finite-
element model solver were also made, where values of the Young’s modulus
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and the Poisson’s ratio were varied and natural frequencies were compared with
measured values Pagnotta and Stigliano (2010), but with this method only
constant values of Young’s modulus and Poisson’s ratio for natural frequency
could be determined.

7 Conclusions

The technique presented in this paper provides a relatively quick and easy way
to evaluate the frequency-dependent Young’s modulus and damping factor of
rubber-like materials.

Three types of modelling for the dynamic material properties of rubber-like
materials in finite-element analyses were presented. The results show that the
shear modulus and consequently the Young’s modulus for these two studied
materials change only slightly with frequency and could eventually, in finite-
element analyses, also be modelled as constants.

Two sources of potential errors were identified. The first was due to the
variation in the dimensions of the rubber specimens and the second due to a
lack of knowledge about the Poisson’s ratio of the rubber.
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